Production Survival Guide for Vibe Coders

Production Survival Guide for Vibe Coders
5 Non-Negotiable Standards for Enterprise Deployment
In the age of vibe coding, anyone can deploy an app. But preventing post-launch disasters isn't about coding skills—it's about engineering standards.
Just clicking the Vercel deploy button? Here are the 5 safety measures that enterprises never skip before launching a service.
Step 1: Visibility (Logging & Monitoring)
Enterprises don't drive blindfolded. By the time users report issues, you're already too late.
Minimum Standard: Log Status Code / Response Time / Error Stack for all API requests
Key Principle: "I know before users tell me" is the starting point of operations.
import logging
import time
from functools import wraps
# Basic logging setup
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s | %(levelname)s | %(message)s'
)
logger = logging.getLogger(__name__)
def log_request(func):
"""API request logging decorator"""
@wraps(func)
async def wrapper(*args, **kwargs):
start_time = time.time()
request_id = generate_request_id()
try:
result = await func(*args, **kwargs)
elapsed = time.time() - start_time
logger.info(f"[{request_id}] {func.__name__} | "
f"status=200 | duration={elapsed:.3f}s")
return result
except Exception as e:
elapsed = time.time() - start_time
logger.error(f"[{request_id}] {func.__name__} | "
f"status=500 | duration={elapsed:.3f}s | "
f"error={type(e).__name__}: {str(e)}")
raise
return wrapper
# Usage example
@log_request
async def call_llm_api(prompt: str):
response = await openai_client.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": prompt}]
)
return response.choices[0].message.contentPro Tip: Connect real-time alerting with Sentry, Datadog, etc. to know immediately when things break at 3 AM.
Step 2: Environment Variable Validation (Fail-Fast Env)
"It worked on my machine?" 90% of incidents stem from missing env vars and secrets.
Minimum Standard: Validate all required env vars (API Key, DB URL, etc.) at app startup
Key Principle: If anything is missing, the server shouldn't start (Fail-Fast)
from pydantic_settings import BaseSettings
from pydantic import field_validator
class Settings(BaseSettings):
"""Required env vars - app won't start if any are missing"""
# API Keys
OPENAI_API_KEY: str
ANTHROPIC_API_KEY: str
# Database
DATABASE_URL: str
# Optional with defaults
MAX_TOKENS: int = 4000
TIMEOUT_SECONDS: int = 30
@field_validator('OPENAI_API_KEY', 'ANTHROPIC_API_KEY')
@classmethod
def validate_api_key(cls, v: str, info) -> str:
if not v or v.startswith('sk-xxx'):
raise ValueError(f"{info.field_name} is not set or is a placeholder")
return v
@field_validator('DATABASE_URL')
@classmethod
def validate_db_url(cls, v: str) -> str:
if 'localhost' in v and not v.startswith('postgresql://'):
raise ValueError("Production DATABASE_URL should not use localhost")
return v
class Config:
env_file = ".env"
# Validate at startup - fails if invalid
try:
settings = Settings()
print("Environment validated successfully")
except Exception as e:
print(f"FATAL: Environment validation failed - {e}")
exit(1)Security Essentials:
- Never commit
.envfiles to Git (add to.gitignore) - Use AWS Secrets Manager, Vercel Environment Variables for production
Step 3: Availability Guardrails (Timeout & Retry)
One slow external API shouldn't bring down your entire service. That's a disqualifying failure.
Minimum Standard: Enforce timeouts on all external requests
Key Principle: "One dies, the rest survive"
import httpx
from tenacity import (
retry,
stop_after_attempt,
wait_exponential,
retry_if_exception_type
)
# HTTP client with timeout config
http_client = httpx.AsyncClient(
timeout=httpx.Timeout(
connect=5.0, # Connection timeout: 5s
read=30.0, # Read timeout: 30s
write=10.0, # Write timeout: 10s
pool=5.0 # Connection pool timeout: 5s
)
)
# Retry decorator (exponential backoff)
@retry(
stop=stop_after_attempt(3), # Max 3 attempts
wait=wait_exponential(multiplier=1, max=10), # 1s → 2s → 4s
retry=retry_if_exception_type((
httpx.TimeoutException,
httpx.NetworkError,
)),
reraise=True
)
async def call_external_api(url: str, payload: dict) -> dict:
"""External API call with timeout + retry"""
response = await http_client.post(url, json=payload)
# Don't retry 4xx errors (client's fault)
if 400 <= response.status_code < 500:
raise ValueError(f"Client error: {response.status_code}")
response.raise_for_status()
return response.json()
# Fallback pattern
async def call_with_fallback(prompt: str) -> str:
"""Switch to fallback when main fails"""
try:
return await call_openai(prompt)
except Exception as e:
logger.warning(f"OpenAI failed, falling back to Claude: {e}")
try:
return await call_anthropic(prompt)
except Exception as e2:
logger.error(f"All LLM providers failed: {e2}")
return "Sorry, a temporary error occurred. Please try again later."Step 4: Resource/Cost Control (Rate Limit & Cost Guard)
Allowing unlimited requests is like leaving your wallet open on the street.
Minimum Standard: Per-IP/user call limits + cost caps
Essential: Without idempotency, payments or requests can fire twice.
from datetime import datetime, timedelta
from collections import defaultdict
import hashlib
class RateLimiter:
"""Simple in-memory Rate Limiter"""
def __init__(self, max_requests: int = 100, window_seconds: int = 60):
self.max_requests = max_requests
self.window = timedelta(seconds=window_seconds)
self.requests = defaultdict(list)
def is_allowed(self, user_id: str) -> bool:
now = datetime.now()
cutoff = now - self.window
# Remove requests outside window
self.requests[user_id] = [
t for t in self.requests[user_id] if t > cutoff
]
if len(self.requests[user_id]) >= self.max_requests:
return False
self.requests[user_id].append(now)
return True
class CostGuard:
"""Cost guardrails"""
def __init__(self, daily_limit: float = 100.0):
self.daily_limit = daily_limit
self.daily_cost = 0.0
self.last_reset = datetime.now().date()
def check_and_add(self, estimated_cost: float) -> bool:
today = datetime.now().date()
# Reset on new day
if today > self.last_reset:
self.daily_cost = 0.0
self.last_reset = today
# Check limit
if self.daily_cost + estimated_cost > self.daily_limit:
logger.warning(f"Daily cost limit reached: ${self.daily_cost:.2f}")
return False
self.daily_cost += estimated_cost
# Warn at 80%
if self.daily_cost > self.daily_limit * 0.8:
logger.warning(f"Cost warning: 80% of daily limit used (${self.daily_cost:.2f})")
return True
class IdempotencyGuard:
"""Duplicate request prevention"""
def __init__(self, ttl_seconds: int = 300):
self.cache = {} # Use Redis in production
self.ttl = timedelta(seconds=ttl_seconds)
def get_key(self, user_id: str, request_data: dict) -> str:
data_str = f"{user_id}:{sorted(request_data.items())}"
return hashlib.sha256(data_str.encode()).hexdigest()
def check_duplicate(self, user_id: str, request_data: dict) -> tuple[bool, any]:
key = self.get_key(user_id, request_data)
now = datetime.now()
if key in self.cache:
cached_time, cached_result = self.cache[key]
if now - cached_time < self.ttl:
logger.info(f"Duplicate request detected, returning cached result")
return True, cached_result
return False, None
def store_result(self, user_id: str, request_data: dict, result: any):
key = self.get_key(user_id, request_data)
self.cache[key] = (datetime.now(), result)
# Usage example
rate_limiter = RateLimiter(max_requests=100, window_seconds=60)
cost_guard = CostGuard(daily_limit=50.0)
idempotency = IdempotencyGuard()
async def handle_request(user_id: str, request_data: dict):
# 1. Rate Limit check
if not rate_limiter.is_allowed(user_id):
return {"error": "Too many requests. Please wait."}, 429
# 2. Duplicate request check
is_duplicate, cached = idempotency.check_duplicate(user_id, request_data)
if is_duplicate:
return cached, 200
# 3. Cost check
estimated_cost = estimate_cost(request_data)
if not cost_guard.check_and_add(estimated_cost):
return {"error": "Daily limit exceeded. Try again tomorrow."}, 503
# 4. Actual processing
result = await process_request(request_data)
# 5. Cache result
idempotency.store_result(user_id, request_data, result)
return result, 200Step 5: LLM Context Management (Token Governance)
LLM apps get more expensive and slower as conversations grow. This isn't a performance issue—it's an operational strategy issue.
Minimum Standard: Enforce Max Tokens limit + summarization logic required
Key Principle: If input is too long, validate at the gate—don't burn API calls
import tiktoken
class TokenGovernor:
"""Token usage management"""
def __init__(
self,
max_input_tokens: int = 4000,
max_output_tokens: int = 1000,
max_history_messages: int = 10
):
self.max_input = max_input_tokens
self.max_output = max_output_tokens
self.max_history = max_history_messages
self.encoder = tiktoken.encoding_for_model("gpt-4")
def count_tokens(self, text: str) -> int:
return len(self.encoder.encode(text))
def validate_input(self, prompt: str) -> tuple[bool, str]:
"""Input validation - check before API call"""
token_count = self.count_tokens(prompt)
if token_count > self.max_input:
return False, f"Input too long. ({token_count} tokens > {self.max_input} limit)"
return True, ""
def trim_history(self, messages: list[dict]) -> list[dict]:
"""Trim conversation history - keep only last N"""
if len(messages) <= self.max_history:
return messages
# Always keep system messages
system_msgs = [m for m in messages if m.get("role") == "system"]
other_msgs = [m for m in messages if m.get("role") != "system"]
# Keep only recent messages
trimmed = other_msgs[-(self.max_history - len(system_msgs)):]
return system_msgs + trimmed
def summarize_if_needed(self, messages: list[dict]) -> list[dict]:
"""Summarize older conversation when tokens exceed limit"""
total_tokens = sum(self.count_tokens(m.get("content", "")) for m in messages)
if total_tokens <= self.max_input:
return messages
# Preserve system + last 2 messages
system_msgs = [m for m in messages if m.get("role") == "system"]
recent = [m for m in messages if m.get("role") != "system"][-2:]
old_msgs = [m for m in messages if m.get("role") != "system"][:-2]
if not old_msgs:
return messages
# Summarize older conversation
old_content = "\n".join(m.get("content", "") for m in old_msgs)
summary = f"[Previous conversation summary: {old_content[:500]}...]"
summary_msg = {"role": "system", "content": summary}
return system_msgs + [summary_msg] + recent
# Usage example
governor = TokenGovernor(
max_input_tokens=4000,
max_output_tokens=1000,
max_history_messages=10
)
async def chat(user_input: str, history: list[dict]) -> str:
# 1. Input validation
is_valid, error_msg = governor.validate_input(user_input)
if not is_valid:
return error_msg
# 2. History cleanup
history = governor.trim_history(history)
history = governor.summarize_if_needed(history)
# 3. Add new message
history.append({"role": "user", "content": user_input})
# 4. API call
response = await openai_client.chat.completions.create(
model="gpt-4",
messages=history,
max_tokens=governor.max_output
)
return response.choices[0].message.contentPre-Deployment Checklist
If 3 or more items are ☐, you're not ready for production.
Series
- Part 1: 5 Reasons Your Demo Works But Production Crashes
- Part 2: Production Survival Guide for Vibe Coders ← Current
- Part 3: For Teams/Orgs — Alignment, Accountability, Operations